criterion performance measurements

overview

want to understand this report?

glob-posix/Simple path

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.0145041478627266e-6 2.032194954707462e-6 2.060233765330293e-6
Standard deviation 5.2061029873083364e-8 7.33526352902582e-8 9.491189412641596e-8

Outlying measurements have moderate (0.48716392396087727%) effect on estimated standard deviation.

glob-posix/Python versions

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.634485550538572e-5 5.6556785545507134e-5 5.6911913187751685e-5
Standard deviation 6.066963704086786e-7 8.730223287762466e-7 1.3585449009303944e-6

Outlying measurements have moderate (0.10253990512705576%) effect on estimated standard deviation.

glob-posix/Python site

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.457012491295437e-5 5.538668603437231e-5 5.8703831673128576e-5
Standard deviation 3.3341266494923234e-7 4.418075277824929e-6 9.733461413292414e-6

Outlying measurements have severe (0.7543792918860517%) effect on estimated standard deviation.

MissingH/Simple path

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.0180379424399e-6 2.1941914883992915e-6 2.3601570086402334e-6
Standard deviation 5.223389506069342e-7 5.891090662212737e-7 7.45019721356891e-7

Outlying measurements have severe (0.9837866638317999%) effect on estimated standard deviation.

MissingH/Python versions

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.2673401010552956e-4 2.3022080538731348e-4 2.3598510049553342e-4
Standard deviation 1.0541358782057611e-5 1.4982081505610456e-5 1.9935665365657026e-5

Outlying measurements have severe (0.6153564642465809%) effect on estimated standard deviation.

MissingH/Python site

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.088508312749642e-3 1.1268450608713865e-3 1.198300127607555e-3
Standard deviation 1.2754192375543258e-4 1.7852449782809125e-4 2.452761941119994e-4

Outlying measurements have severe (0.8770067359230508%) effect on estimated standard deviation.

Glob/Simple path

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.621570943388557e-3 4.665443737789015e-3 4.766592037370835e-3
Standard deviation 1.0871561771742286e-4 1.9864997242092144e-4 3.789370944051207e-4

Outlying measurements have moderate (0.22646252412547696%) effect on estimated standard deviation.

Glob/Python versions

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.1254096183597748e-2 2.148292625321264e-2 2.217762029617671e-2
Standard deviation 4.0305802722126054e-4 8.292161917979924e-4 1.5164464406536649e-3

Outlying measurements have moderate (0.13266522349657034%) effect on estimated standard deviation.

Glob/Python site

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.363978986117748e-2 3.3772590183338565e-2 3.4048613458673015e-2
Standard deviation 1.6606167632308118e-4 3.599295335804036e-4 6.451102050558873e-4

Outlying measurements have slight (5.859374999999999e-2%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.